Mellivora: A Battery Experiment

Nathan Ball Derek Clougherty Lubin Jian Derek Wang

Advisor: Professor Leonard

Overview

- Team Introduction
- Problem
- Our Approach
- Technological Innovations
- Design Alternatives
- Design Specifications
- Block Diagram
- Individual Subsystems
- MDR Deliverables
- Questions

Team Introduction

Nathan Ball EE

Derek Clougherty EE

Lubin Jian EE

Derek Wang CSE

The Problem

- Inefficiencies of conventional cars
- Lost power from braking
- Long charge times
- Chemical batteries are not environmentally friendly

Our Approach

- Demonstrate effectiveness of supercapacitor technology
- Demonstrate recharging capabilities with regenerative braking
- Use Brushless DC motor to turn a single wheel
- Physical wheel controls to accelerator and brake wheel
- Android App that displays RPM, Speed, and Capacitor Bank Charge Level

Regenerative Braking

- Recover kinetic energy from braking instead of converting to heat
- Back EMF slows motor
- Braking speed is controlled via brake pedal input

Why Supercapacitors?

Advantages

- Rapid charge/discharge cycles
- No degradation over vehicle life
- Future technology will drastically reduce cost, size, and weight while significantly increasing charge density

Disadvantages

- Advanced technology not yet commercially released
- High discharge rate requires special cautions and consideration
- Fewer applications in the automotive industry compared to batteries, need custom solutions

Capacitor Banks Usages

- Regulates reactive power (AC power correction)
 - Computers, buses, trains, cars, generators, transformers, etc.
- Can supply huge bursts of current
 - Pulsed lasers, fusion research, particle accelerators, nuclear detonators, railguns etc.
- As a power supply
 - Due to size, weight, cost, and charge density issues, has not been done
 - Tesla has expressed interest in this technology
 - EEstor claimed in 2007 to have created a car battery equivalent capacitor bank. Has not demonstrated it.

Final Product and Specification

- One wheel concept to show advantages of capacitor bank power technology
 - Accelerated charging capabilities with capacitor bank power supply
 - On board Central Control Module program
 - Controlled with multiple inputs Pedals, Android App
- Requirements
 - Top speed of 30MPH
 - Efficiency of system must be above 70%
 - Full stop from 30 MPH within 3 seconds

Block Diagram

Central Control Module

Central Control Module (CCM)

Microprocessor: TI Sitara ARM Cortex A9 MPU

Main Tasks

- Input processing
- Android App Interfacing
- Power Control
- Drive Control

- Also deals with error handling
 - Ex. Braking and accelerating simultaneously.

Input Processing

- By Gamepad Pedal
 - Interpret gamepad voltage signals as wheel speed demands and power mode changes
 - A/D Converter
- By Android App
 - Interpret bluetooth signals from Andreid app to modulate wheel speed

Sensor Data and Android App Interfacing

Processes Sensor Data

- Hall Sensor feedback in wheel
- Power supply voltage from Power Control
- Current and voltage to and from power supply
- Power mode (drive, braking, freewheel, and charging)
- Sends Sensor Data to Android App via Bluetooth
 - Wheel speed and RPM
 - Power remaining in power supply
 - Rate of power consumption and generation
 - Power control mode

Communicates via bluetooth

Power Control and Drive Control

- Power Control
 - Mode changes (Drive, braking, freewheel, and charging)
- Drive Control
 - Control variable motor speed using pulsed signal
 - Control variable regenerative braking with pulsed signal
 - Select forward/backward using directional signal
 - Calculate what pulsed signal is needed based on gamepad pedal or Android input and wheel speed sensor data

MDR Deliverables

 CCM program calls correct functions in simulation and outputs correct dummy signals based on simulated inputs

Challenges:

- Get microprocessor mounted and with a working program
- CCM on chip can recognise and give the correct output to signals from gamepad pedal input

Controller Inputs and Display

Pedals as Analog Inputs

Drive Pedals

- In order to replicate a real driving experience
- Adapt gaming pedals in order to connect to CCM
- Simplifies android application

Android Application Display

Android Display

- Takes in an input from the CCM
- Displays valuable information the summarizes the current state of the system
 - Wheel speed
 - Power being drawn from capacitor bank
 - How much power is left in the capacitor bank
- We will be able to visualize the regenerative braking in real time
- Eventually implement controls to move the wheel from the android application

MDR Deliverables

- Deliverables
 - Working pedals that can interface with the CCM
 - User-friendly application that displays the information in a clear concise way
- Challenges
 - Adapting the pedals from whatever system it was made for

Drive Module

Nathan Ball

Stepper Motor

- Permanent magnets on rotor
- Teeth offset between rotor and stator
- Energize electromagnets to turn rotor

Motor

- 8 Wire NEMA 34 Stepper Motor
- 5 Nm holding Torque
- \$45

Motor Driver

- Converts signal from controller to motor pulses
 - MA860H Driver
- Control regenerative braking
 - Full wave rectifier to convert AC to DC current
- Feedback
 - 3 Hall Sensors

MDR Deliverables & Challenges

- MDR Deliverables
 - Demonstrate working drive module from test signals
 - Hall sensors for wheel speed
- Challenges
 - Providing clean power with regenerative braking

Power Supply

Derek Clougherty

Power Supply and Charge Controller Requirements

- Support 3-5 minute runtime
- Monitors cell voltages for fault detection and overvoltage conditions
- Charge cells from 120V AC power supply or drive motors while in regenerative braking mode
- Communicate with CCM for charge level display and for switching between power and regenerative braking mode

Supercapacitor Power Supply

Capacitor Maxwell BCAP0350 in 6x2 series-parallel array 2.7V 350F 170A (max) Power for supercapacitor array 2[((116.7F*16.2V^2)/2)/(1Wh/3600J)] = 4.25 Wh

Motor

OMC 34HS38-3008S 36V 2A 5Nm 3500RPM

Runtime

36V*2A = 72W

Derek Clougherty runtime

MDR Deliverables & Challenges

- MDR Deliverables
 - Circuit layout designed and prototyped
 - Demonstrate switching between power and charging modes
- Challenge
 - Providing clean power to capacitor bank during regenerative braking
 - Producing a suitably sized power supply that fits within the budget

Conclusion

- Problem
- Our Approach
- Technological Innovations
- Design Alternatives
- Design Specifications
- Block Diagram
- Individual Subsystems
- MDR Deliverables

Questions?

- Energy in our wheels (Joules of KE) at different speeds?
- Energy is only dependent on mass of wheel if we pick a desired lateral velocity
- $KE = Iw^2$
- $I_{Wheel} = \frac{1}{2} M (R_{inner}^2 + R_{Outer}^2)$

- Braking force of regenerative braking (how fast can we stop?)
- Need Physical testing, braking speed does not decrease regenerative efficiency (within reason, excessively long braking distances will have additional friction losses compared to faster stops)

- Efficiency of battery/ capacitor bank in charge/discharge from current input?
- Battery seems to be between 10-20% loss

- Motor Efficiency, how many joules can we get out if we put in X amount of electric joules
- 3k or 3.5k RPM on standard

Capacitor Bank Equations

 $Q = CV^{2}/2$ 1 Wh = 3600 J

Capacitance for one string of 6 capacitors in series

1/[(1/350 F)6] = 58.3 F

Capacitance for two strings of six capacitors in parallel

58.3 F + 58.3 F = 116.7 F

Voltage for one string of 6 capacitors in series

6(2.7 V) = 16.2 V

Q = $[116.7 \text{ F} \times (16.2 \text{ V})^2] \div 2 = 15,309 \text{ J}$ (1 Wh / 3600 J)(15,309 J) = 4.25 Wh

Wheel Speed Calculations

7.75" radius to tread of wheel

Circumference of wheel = $2\pi r$

 $2 \times \pi \times 7.75 = 48.7$ "

Wheel speed to achieve 30MPH Speed (MPH) × 1 Hr/60 min × 63360 in/mile ÷ circumference of wheel = RPM 30MPH × 1 Hr/60 min × 6360 in/mi ÷ 48.7 in/revolution = 65.3 RPM

Reduction ratio

Motor speed \div wheel speed 3500 RPM \div 65.3 RPM = 53.8:1

Torque delivered to the wheel Motor torque \times Reduction ratio 5Nm \times 53.8 = 269 Nm

Motor Conections

